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ABSTRACT

This study final report is submitted to NASA/JSC by TRW Systems Group

in accordance with contract NAS9-12741. As part of the effort to reduce

the costs of shuttle payloads, this study was performed to determine the

minimum, mandatory design and verification criteria necessary to insure

that sortie payloads are compatible with the space shuttle system; distin-

guishing them from those criteria related primarily to mission success,

configuration choices, management prerogatives, or other cost-benefit

variables which are, therefore, discretionary to payload project management.

Results from an investigation of past practices in spacecraft and aircraft

programs served as a baseline of information used to identify and determine

candidate criteria and also to develop a design and verification cateqori-

zation methodology which distinguishes candidate criteria as mandatory or

discretionary. This study concluded that utilization of the mandatory

design criteria, presented in this report, as the basis for sortie payload

specifications will produce basic systems compatibility between the orbiter

and its sortie payloads at reduced costs. Also, when additional criteria

are generated due to changes in subsystems, designs, or guidelines, the

categorization methodology developed can aid managerial decision-making

concerning these criteria. To a limited degree, the compatibility criteria

as defined in this study reflect a portion of the total system safety
effort involved in a manned space program.
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FOREWORD

Space shuttle characteristics are expected to allow selective easing

of many cost-inducing criteria now required of payloads placed in orbit by

expendable launch systems. Of particular interest is the prerequisite of

identifying and differentiating between the minimum, mandatory design and

verification criteria for sortie payloads and all other criteria for pay-
load projects.

The TRW Systems Group under two concurrent contracts to NASA/JSC

(NAS9-12741 and NAS9-12742) has performed a combined study effort entitled

"Space Shuttle Sortie Payload Crew Safety and Systems Compatibility Criteria"
for the express purpose of addressing the determination of mandatory and
discretionary design and verification criteria applicable to sortie pay-
loads from operational space shuttle management viewpoint. The study pro-
jects were performed during the period from 16 May 1972 through 15 May 1973.

The studies were sponsored jointly by NASA Headquarter's Mission and
Payload Integration Office of the Office of Manned Space Flight, and the
Lyndon B. Johnson Space Center's Engineering and Development Directorate.
Study direction was provided by Mr. Earle M. Crum of the Future Programs

Division, Payloads Engineering Office. He was assisted by a NASA

Management Team representing NASA Headquarters, Johnson Space; Kennedy
Space; Langley Research; Lewis Research; and Marshall Space Flight Centers.

The results of these studies are documented in the following three
volumes:

Space Shuttle Sortie Payload Crew Safety and Systems
Compatibility Criteria Documentation

Volume Title Document No.
I Executive Summary 22214/22215-H013-RO-00

II Crew Safety Design and 22214-HO14-RO-O0
Verification Criteria

III Systems Compatibility Design 22215-H014-RO-O0
and Verification Criteria
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1. INTRODUCTION

1.1 BACKGROUND

NASA is currently examining shuttle payload costs in an effort to both

more accurately predict and reduce such costs. History indicates that the

criteria applied by NASA to previous space payloads caused them to be quite

expensive. This practice was acceptable considering the costs associated

with the launch and the necessity for a high probability of mission success.

However, when these costs are used to estimate the cost of future shuttle

payloads, it is evident that there would soon be a cost factor limiting

the use of the shuttle.

Fortunately, the shuttle characteristics will allow selectively easing
many of the cost-inducing criteria now placed on expendable launch system

payloads. Relaxing these criteria is expected to greatly reduce the cost
of space payload development.

Central to those cost-reducing efforts must be the capability to

identify and differentiate between the minimum, mandatory design and veri-
fication criteria for shuttle sortie payloads and all other candidate
criteria for payload projects. Accordingly, this study will contribute to
lower sortie payload costs by producing a methodology capable of defining
the minimum criteria required for a compatible sortie payload. The
resulting criteria will form the basis of future specifications to be
developed when quantitative shuttle data are available.

1.2 OBJECTIVES

The prime objective of this study was to identify the minimum, manda-

tory payload design and verification criteria necessary to insure that

sortie payloads are compatible with the space shuttle system, distinguishing

them from those criteria related to mission success, configuration choices

or management approaches which are, therefore, discretionary to payload

project management as variables in cost-benefit trades. Specific study

objectives are tabulated in Table 1-1.

1-1
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Table 1-1. Specific Study Objectives

* Research, identify, and analyze past compatibility design
practices in analogous payload situations to establish a
historical perspective and to utilize available experience.

* Establish categorizing processes for distinguishing between
shuttle mandatory and discretionary compatibility desian
and verification criteria.

* Identify the mandatory design and verification criteria that
are required by shuttle management to insure systems com-
patibility of sortie payloads with the space shuttle system.

* Identify the compatibility design and verification criteria
that are discretionary to payload management as variables
in cost-benefit trades.

1.3 SCOPE

The scope of this study is bounded by the sortie payload philosophy
shown in Figure 1-1. A shuttle sortie payload may consist of one or more
major elements. These elements remain attached to the orbiter at all times
and therefore do not include propulsion systems nor free-flying satellites.

A given sortie payload may interface with the shuttle mission specialist

station (MSS) and payload specialist station (PSS) and excludes a remote

manipulation system. Several pallets of experimental equipment may reside
in the payload bay as well as piggy-back package(s). Additionally, as in
Skylab, some experiment equipments may also be included in the orbiter crew
compartments.

Accordingly, the criteria derived by this study are applicable to
sortie payload elements carried in the shuttle payload bay or in the crew
compartments.

1-2
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Piggy-Back Additional
PSS Panels Package(s) Pallet(s)

-ijii LPalletA-

Experiment
Equipment(s)

Figure 1-1. Shuttle Sortie Payload Philosophy

Since sortie payloads are pre-phase A in development, a generalized

sortie payload was conceived against which an interface design analysis

could be made. This generalized payload model contains the subsystems,

instruments, and considerations known to be included in representative

sortie payloads and is defined in Section 4.

The basic guidelines employed in the study are summarized in Table 1-2.

1-3
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Table 1-2. Study Guidelines

* This study addresses the post R&D, operational shuttle era assuming a
mature, fixed-design, "shuttle airlines" flight operations capability
oriented to low-complexity, low-cost operations.

* Design and test considerations include only those imposed by the space
shuttle for mission purposes and are confined within the limits from
terminal countdown through a normal landing.

* Whether payload equipment is from the civilian sector or GFE should not
alter the applicability of the shuttle imposed mandatory criteria. The
payload should be given maximum possible latitude.

* Extravehicular activity (EVA) requirements are not excluded from a
sortie payload. However, shuttle EVA equipment are excluded from
assignment to the payload.

* Study definitions:

- Criteria are general rules by which the acceptability of shuttle
payloads may be determined.

- Specifications are the translations of criteria into explicit,
usually quantitative, statements suitable for detailed design and
test purposes. A criterion may translate into several specifications.

- Requirements may be criteria or specifications which have been im-
posed by appropriate administrative authority.

- Orbiter/payload interface is a point (or area) where a physical
relationship exists between the orbiter and payload, or between
major payload elements, wherein physical and/or functional compat-
ibility is required.

- Systems compatibility involves those payload interface design features
that must be satisfied so that the payload elements and the orbiter
can function together within acceptable degrees of mutual tolerance.
Compatibility between payload elements is defined to encompass the
same considerations as those between the payload and the orbiter.

- Mandatory systems compatibility design criteria and verification
levels are defined, levied and controlled by shuttle management and
are obligatory to all sortie payload elements. However, certain of
these criteria that affect only the payload may be controlled by
payload management.

- Discretionary design criteria make up all other criteria. Implemen-
tation and verification of these criteria are subject to payload
project management prerogatives.

1-4
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2. PRECEDENT PRACTICES RESEARCH

An investigation of past practices in spacecraft and aircraft programs

was accomplished to establish a historical perspective and a baseline of

information in the form of conclusions and recommendations applicable to

this study.

2.1 APPROACH

The basic standard for selection of programs for investigation was

that they be analogous to the shuttle-payload situation. This basic stan-

dard was expanded into a set of guidelines to be used in the selection of

past programs. Table 2-1 itemizes these guidelines and indicates the

rationale or analogy to the shuttle for each guideline.

A wide variety of programs were selected based upon the guidelines.

Twelve programs were addressed and are presented in Table 2-2 along with

comments on their applicability. Although not considered as past programs,

two shuttle-related study reports, Research and Applications Module (RAM)

and Shuttle Orbital Applications and Requirements (SOAR) studies

(References 1 and 2), were provided by NASA to give current perspective

concerning some sortie payloads, payload integration and other pertinent

planning details. These programs and studies were considered to cover an

adequate cross section of applicable programs necessary to obtain a com-

prehensive understanding of the practices, procedures, and methods of

analogous programs.

Utilizing the available information sources shown in Table 2-3, a plan

was formulated for researching the selected programs. This plan consisted

of a series of requirements, shown in Table 2-4, obtained from each of the

selected programs. These requirements, along with appropriate documenta-

tion, provided a comprehensive insight as to how the compatibility problem

was handled on these programs. In addition, a basis for recommending those

past practices and procedures which should not be carried forward into the

shuttle era was established.

2-1
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Table 2-1. Past Program Selection Guidelines

* Programs were either manned - Shuttle is a manned program. Payloads
or unmanned. were integrated onto unmanned programs

as will be done on shuttle. Further,
many techniques of unmanned programs
may be applicable to the shuttle.

* Payload carrier was an - The shuttle is a spacecraft but has
aircraft or spacecraft. many of the attributes and charac-

teristics of aircraft.

* Payload was a scientific - Shuttle payloads, for the most part,
experiment. will be scientific in nature.

* Preferable that the carrier - The shuttle will carry a variety of
vehicle accommodated several independent payloads.
independent payloads.

* Carrier vehicle levied com- - The shuttle will require that pay-
patibility requirements on loads be compatible with the shuttle
the payloads. vehicle.

* Select the most recent and - It was not feasible to research all
most accessible of the past programs; the most recent programs
programs. provide the latest technology.

2-2
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Table 2-2. Past Programs Selected for Historical Research

PROGRAMS APPLICABILITY

Manned Spacecraft

* Apollo SIM Bay A major manned program. Payloads
were controlled from crew cabin.
EVA activities. Several payloads
integrated

* Apollo Lunar Surface Experiments A major manned program. EVA consid-
Package (ALSEP) erations

* Apollo Particles and Fields As part of SIN bay experiments, gave
Subsatellite more detailed view of integration

problems by considering an individ-
ual payload

* Skylab Experiments Aspects of sortie lab. Many experi-
ments integrated

Unmanned Spacecraft

* High Energy Astronomical A large payload that was scheduled
Observatory (HEAO) to be a shuttle payload

* Orbiting Geophysical Observatory Integrated approximately 27 dif-
(OGO) ferent experiments

* Pioneer Interplanetary vehicle considera-
tions; met other guidelines

* Scout Scout and Delta were low-cost
utility-type vehicles which carried

* Thor-Delta a variety of payloads.

* Vela Highly successful spacecraft program
which was typical of many others
with respect to documentation
methods

Aircraft Programs

* Earth Resources Aircraft Program
(ERAP) These aircraft programs have cost-
SAirborne Science Program (ASP) effective aspects that could be

(CV-990 Aircraft) adopted by the shuttle.

2-3
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Table 2-3. Historical Research Information Sources

DATA SOURCE PROGRAM

NASA

Johnson Space Center

Engineering and Development ALSEP (3, 4)*, Apollo SIM Bay
Directorate Experiments (5), ERAP (6), RAM

(1), SOAR (2)

Skylab Program Office Skylab Experiments (7)

Ames Research Center ASP (CV-990) (8)

Langley Research Center Scout (9)

Marshall Space Flight Center Skylab Experiments (7), Shuttle
(10)

Contractors

North American Rockwell Apollo SIM Bay Experiments (5)

McDonnell Douglas Corporation Thor-Delta (11, 12), Shuttle (13)

Vought Missiles and Space Company Scout (9)

Boeing Aerospace Skylab Experiments (7)

TRW OGO (14), Pioneer (15, 16),
Vela (17, 18), HEAO (19),
P&F Subsatellite

Documentation
(Other than from above sources)

Aerospace Corporation Shuttle (20)

Lockheed Missiles and Space Shuttle (21)
Corporation

Grumman Aerospace Corporation ALSEP (22)

*Documentation references in parentheses

2-4
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Table 2-4. Precedent Practices Research Requirements

1. Determine the criteria used to write payload design specifications
that were placed upon experimenters to assure compatibility. If not
available, obtain payload specifications. Determine the rationale
or justification for implementing each criterion or specification.

2. Determine the payload testing criteria or specifications used to
achieve design compatibility with the payload carrier vehicle or with
other payloads.

3. Determine the payload design and test criteria or specifications
designated as mandatory. Determine the guidelines used to classify
these criteria as mandatory.

4. Which of these design and test criteria or specifications were relaxed
or revised from their original requirement as problems arose in order
to meet the compatibility requirement? What was the original require-
ment and what caused the change?

5. Determine which criteria or specifications resulted in high production
or testing costs with respect to overall costs.

6. Determine the significant payload integration problems and how they
were solved. This includes both payload-to-vehicle and payload-to-
payload compatibility problems.

7. Determine how successful the payloads were and if any failures were
due to integration problems.

8. Determine the criteria and philosophy concerning off-the-shelf or
standard components used in the payloads.

2-5
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2.2 CONCLUSIONS

Conclusions from the historical research effort evolved into statements

which applied to one or more of the programs investigated. These statements,

itemized in Table 2-5, represent a summary of the information gained from

the research requirements and the documentation that was reviewed. From

these conclusions, recommendations for application to subsequent study re-

quirements were formulated.

An additional result of the historical research was an accumulation of

specifications, requirements, guidelines, and criteria utilized by these

programs to guide payload development and integration. This accumulation

became the baseline for sortie payload criteria determination and develop-

ment which is discussed in Section 4.

2.3 RECOMMENDATIONS

The recommendations resulting from the analysis of past practices,

shown in Table 2-6, were presented to and approved by the NASA Management

Team at the study formal mid-term review. Where applicable, the recommen-

dations were formulated employing the terminology of the study. They were

geared toward being utilized as a baseline for the development of design

and verification criteria as well as the categorization processes (see

Section 3) that were developed to distinguish between mandatory and dis-

cretionary criteria. Therefore, each recommendation is reflected in the

categorization processes, in the manner criteria were developed, or in

philosophies which would contribute to overall cost reduction of payloads

in the shuttle era.

2-6



Table 2-5. Conclusions from Investigation of Previous Programs

PROGRAMS

MANNED UNMANNED AIR-
SPACECRAFT SPACECRAFT BORNE

CONCLUSIONS "

the past resulted in successful programs.
the payloads on first attempt. For this reason,

. Procedures, methods, philosophy, etc., utilized in X X X X X X Xcom-
the past resulted in successful programs.

2. Programs had "one-chance" to assure that payloads
were compatible with the spacecraft; therefore, pre-
vious practices were geared toward mission success of X X X X X X X X X X

the payloads on first attempt. For this reason,
functional requirements were not separated from com-

patibility design and verification requirements.

3. Common practice is for NASA to fly only equipment X X X X X X X X X X X

that meets all government specifications.

4. Experimenters were supplied with guiding documents

(such as P&I specs, ICD's, or handbooks) which gave X X X X X X X X X X X X
design and test requirements to various levels of de-
tail with the type of program determining this level.

5. The number of payload requirements and specifications
levied were directly proportional to the cost of
payload delivery. L,

* Highest Complexity: MSF & Interplanetary Programs X X X X X o

* Lower Complexity: Unmanned Programs X X X

9 Lowest Complexity: A/C and Certain Unmanned X X X X
Programs

o



Table 2-5. Conclusions from Investigation of Previous Programs (Continued)

PROGRAMS

MANNED UNMANNED AIR-
SPACECRAFT SPACECRAFT BORNE

CONCLUSIONS

0 -QC co _ L-) LU LU LU CM i= V)

6. Compliance with the requirements levied was con-
sidered mandatory. However, if original requirements
could not be met, a compromise or waiver would be

granted based upon a cost vs. benefit analysis rather X X X X X X X X X X X X

than deleting the experiment or causing extensive re-
design. Therefore, many "mandatory" requirements
were actually "discretionary" when it was determined
the payload could not meet the requirement.

7. Programs relied heavily on generally accepted design X X

standards.

8. Programs were R&D in nature and, from the standpoint
of integrating experiment payloads, seemed to become
more complex as experience was gained. Manned X X X X X X
spacecraft programs levied even more requirements on
payloads for subsequent missions rather than fewer
ones.

9. Design requirements for payload-to-spacecraft and

payload-to-payload compatibility were intermeshed X X X X X X X X X X X X

with the functional requirements.

Co
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Table 2-5. Conclusions from Investigation of Previous Programs (Continued)

PROGRAMS

MANNED UNMANNED AIR-
SPACECRAFT SPACECRAFT BORNE

CONCLUSIONS
C) <: co LU

CD J ) > C) CD C) -- C

<oI ) Ul) a_ =-C C > V C) LU

10. Programs on which the spacecraft was designed or
built before the payloads were known levied minimal X X X X

interface requirements on the prospective payloads.

11. Programs relied heavily on formal "paperwork

systems" rather than informal agreements to achieve X X X X X X X X

compatibility of payloads.

12. Insuring systems compatibility with the spacecraft
was not as difficult, nor did it cause as many X X X X X X X X X X X
problems, as insuring functional reliability of
the payloads.

13. When the payload-to-spacecraft interface is strictly
physical (i.e., the payload does not operate from X X X X X
the spacecraft but is merely carried by the space-
craft), compatibility requirements are minimized.

14. Inflight maintenance and adjustments by operators X X

increased payload reliability.
0I

o
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Table 2-5. Conclusions from Investigation of Previous Programs (Concluded)

PROGRAMS

MANNED UNMANNED AIR-
SPACECRAFT SPACECRAFT BORNE

CONCLUSIONS

orJ) 1.) V > C) I- C - o C)

15. Nonexpendable payload carriers had re-fly and/or
inflight maintenance capability which permitted X X
flight testing rather than ground testing to assure
compatibility.

16. NASA procuring regulations (traditions) dictate much
testing. Essentially, the same sequence of design X X X X X X X X X X X
and testing requirements was levied regardless of
application or complexity of the hardware.

17. Extensive ground testing of the payloads was re-
quired by the spacecraft management to insure X X X X X X X
mission success.

18. Testing was the primary method of verification of
payload design, compatibility, and functional X X X X X X X X X X X
reliability.

19. Testing to assure interface compatibility was an X X X X X X X X X X X
indiscrete subset of functional testing.

20. There was no such thing as "safety testing".
Meeting compatibility requirements insured safety. X X X X X X X X X X X X
Therefore, safety requirements became design
requirements and were tested as such. o

o
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - -
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Table 2-6. Recommendations from Investigation of Previous Programs

CONCLUSION
RECOMMENDATIONS REFERENCES

1. The following recommendations should be considered 1
prefaced with the phrase "In order to minimize the
overall cost of shuttle payloads..." because past
methods were successful and a prime reason for change
is to reduce costs.

3, 4, 6,
2. Minimize and standardize requirements, criteria, 7, 8, 10

guidelines, etc., imposed by the space shuttle on
experimenters who design and test payloads.

3, 4, 5,3. Shuttle payload design and verification criteria 6, 7, 9,
should be stated in general terms and mandatory 10
requirements should be minimal.

4. Since shuttle will not be in a "one chance for 2,
success" situation with respect to payloads, cri-
teria and requirements once considered mandatory
should be evaluated in a different perspective.

2, 9
5. Criteria levied on payloads by the orbiter to assure

compatibility should be distinguishable from those
criteria levied to assure payload reliability or
crew safety.

2, 9
6. Compatibility criteria should also be further dis-

tinguishable as either mandatory or discretionary
to shuttle management.

10, 12,7. Mandatory compatibility design criteria levied on 13
space shuttle payloads should be only those that
are imposed by the shuttle management and involve
a payload-orbiter or payload-payload interface or
interaction. They are the minimum criteria which
permit the payload to operate in the orbiter with-
out causing unacceptable interference with the
operations or performance of the orbiter or another
payload. Typically, mandatory criteria should not
be waiverable or subject to negotiation.

16, 17, 18,8. Mandatory compatibility verification criteria should 19, 20
be required by shuttle management only for mandatory
design criteria. However, every mandatory design
criteria should not necessarily require a test for
verification. Another verification method may
suffice.
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Table 2-6. Recommendations from Investigation of Previous
Programs (Concluded)

CONCLUSION
RECOMMENDATIONS REFERENCES

9. Rely on past experience to reduce the number and 10, 12, 13,
severity of mandatory design and verification 16, 17, 18,
criteria and stress methods of design verification 19, 20
other than testing such as:

* Similarity * Inspection
* Analysis * Demonstration

Experience plus intentional overdesign of interfaces
(where economical and commensurate with orbiter
capabilities) will eliminate much testing.

10. Discretionary compatibility design criteria give 6
payload program management additional assurance
that payload reliability or operation is enhanced
above a minimum acceptable level and may be made
as a result of cost-benefit analyses.

11. Discretionary verification criteria are those levied 6
to give additional assurance (above some minimum
acceptable level that another verification method
would give) that a design feature is acceptable.

12. Summarily, mandatory compatibility criteria should 3, 4, 5,
be levied by JSC shuttle management and discretionary 6
criteria levied by payload management.
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3. DETERMINATION OF CATEGORIZATION PROCESSES

The objective of categorization processes determination was to develop

tools which could be utilized to 1) determine if a candidate design criterion

was part of the minimum, mandatory set or the discretionary set for systems

compatibility, 2) generate a rationale to support the determination, and 3)

determine the minimum acceptable verification method for a mandatory crite-

rion. Two processes were developed. The first to be discussed, the design

categorization process, was structured to utilize the boundaries of the

study to systematically determine those criteria which are the minimum re-

quired for systems compatibility. These mandatory criteria are distinguished

by the process from all other criteria because they are required for nominal

payload/orbiter operation. The other methodology, the verification process,

was structured to determine the minimum level of verification necessary to

verify a mandatory design criterion. The remainder of this section details

the general approach utilized in this development along with specific and

detailed descriptions of the processes.

3.1 APPROACH

A "logic tree" methodology consisting of a series of analytical ques-
tions was utilized for formulating the categorization processes. The
processes were developed based upon guidelines and assumptions which were
derived from analysis of the objectives and scope of the study, Precedent
Practices Research recommendations, and other NASA recommendations and
directives. Table 3-1 itemizes these basic guidelines and assumptions
which, in addition to the general Study Guidelines in Table 1-1, are
reflected in the structure and statements within the processes.

3.2 DESIGN CATEGORIZATION PROCESS

The objective of the design categorization process was to systemati-
cally determine for each candidate sortie payload criterion whether it is
mandatory or discretionary with respect to systems compatibility. The
following subsections detail the approach and results of this methodology.
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Table 3-1. Categorization Processes Guidelines and Assumptions

Design Process

* Orbiter design remains fixed and the design criteria generated from
the study will only affect payload design. Payload operation
procedures will not be considered applicable to the study.

* Compatibility design criteria involve interfaces and interactions
between the orbiter and the payload.

* The processes should apply to payloads already developed as well as
those that will be developed in the future.

* The orbiter management will levy mandatory design criteria upon
payload projects that will ensure payload and orbiter compatibility
for nominal operations.

* Compatibility design criteria levied to prevent or circumvent a
contingency or non-nominal situation will not be considered mandatory.
These types of criteria will be either discretionary compatibility
or crew safety criteria.

Verification Process

* The verification process will determine if a design criterion must
be verified by test or by another method of verification.

* The shuttle program management will require some verification level
of all mandatory design criteria.

* Shuttle program management will not require verification of discretion-
ary design criteria.

* Commensurate with accumulated manned space flight (MSF) experience,
verification techniques other than testing will be emphasized to
reduce costs.

3.2.1 General Approach

The logic diagram approach to structuring the design process is shown
in Figure 3-1. Each diamond represents a significant aspect to the overall
categorization problem. The first three steps of the methodology will
determine if a criterion affects payload design, is applicable to a sortie
payload, and if the criterion is crew safety oriented. These steps are
somewhat straightforward but are necessary to meet overall study objectives
and eliminate criteria that have previously been imposed but are not part
of the minimum set of criteria for basic compatibility. The remaining areas
of concern require more extensive analysis.

3-2



22215-H014-RO-00

CANDIDATE
CRITERION

FORDESIGN YES NO SORTIE YES NO
SAFETY P COMPATIBILITYCRITERION P/L

NO YES NO YES

N/A REFER TO N/A N/A

SAFETY STUDY

DISCRETIONARY NO 4ECESSARY
CRITERIONFOR NOMINALCRITERION FUNCTION-

ING?
YES

MANDATORY
CRITERION

Figure 3-1. General Approach to the Design Categorization Process

Each criterion must be examined to determine if it affects an orbiter-pay-

load interface and then if nominal operation of either the payload or

orbiter is impacted by the criterion. The analysis surrounding each of

these areas will yield a rationale that will logically categorize the

criterion.

Because of the variation in criteria purposes and the many considera-

tions surrounding each segment of the process, this general approach process

was expanded to facilitate analysis.

3.2.2 Detailed Methodology

Expanding the general design process resulted in the detailed logic

flow shown in Figure 3-2. A necessary accompaniment to this detailed

methodology is further explanation and underlying considerations associated

with each area of concern. The following is a block-by-block discussion of

the flow.
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IS THE CRITERION IS THE PRIMRY REASON DISCRETIONARY
DOES THE CRITERION FOR THIS CRITERION TOCANDIDATE APPLICABLE TO TE ESPAYLOAD YES REDUCE A CREW HAZARD YES REFER TO SAFETY

CRITERION PAYLOAD CLASS UNDER POSSIBILITY AS DE- STUDY FOR ANALYSIS
DESIGN FACTORS? FINED BY THE GUIDE-

CONSIDERATION? LINES?

N 4 NO No

NOT APPLICABLE - DOES THE CRITERION YES NO 12

CANDIDATE FOR FUTURE REFLECT OR ANTICIPATE YES IS A CREW HAZARD POSSIBLE

NASA STUDY A C INGENCY IF THE CRITERION IS NOT

SITUATION? STISFIED?

NOI YES 6 NO

DES THE CRITERION REFLECT OR INVOLVE ANY OF THE COMPATIBILITY INTERFACES OR INTERACTIONS

* ORBITER . ORBITER- * MISSION-IN- * PAYLOAD- * PAYLOAD 8
(INC. CREW) INDUCED EN- DUCED NATURAL INDUCED EN- ENVELOPE OR DOES THE CRITERION

PAYLOAD SUB- VIRONMENT OR ENVIRONMENT VIRONMENT OR MASS PROPERTIES ADDRESS PRIMARILY THE

SYSTEM SUP- CHARACTERISTIC CHARACTERISTIC CHARACTERISTIC OPERATION OF THE

PORT ELEMENT OR PROVISION ORBITER OR THE PAYLOAD?

PAYLOAD ORBITER

9 10

COULD THE PAYLOAD 11 COULD THE ORBITER

FUNCTION NOMINALLY IF NOFUNTIO NMINALLY
THE CRITERION WERE NOT THE CRITERION WRE NOT

SATISFIED? SATISFIED?

I

I

Figure 3-2. Design Categorization Process Logic Flow
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Block 1: Is the criterion applicable to the payload class under considera-

tion?

A basic consideration of this study was that the design process and

criteria development would consider only sortie payloads. The study

definition of sortie payloads (discussed in Section 1.3) was utilized as

the basis for the analysis. Specific hardware considerations precluded

from investigation in this study were payloads with propulsive or kick

stages, free-flyer payloads, and other ejected payloads.

Block 2: Does the criterion affect payload design factors?

A basic tenet of this study is that the criteria will be used as a

basis for writing design specifications for payloads. This question is

directed toward assuring that the criterion, in fact, affects payload

design rather than indicating how the payload will be operated or other

procedural considerations. If the criterion in question does not affect

a design factor, it is not considered applicable to this study because it

would lie outside the minimum mandatory set and therefore would increase

mandatory compatibility costs. As shown by Block 4, the criterion is re-

tained for possible future NASA use.

Block 3: Is the primary reason for this criterion to reduce a crew hazard

possibility as defined by the guidelines?

The study was directed solely at criteria utilized for the purpose of

assuring systems compatibility and not crew safety. The purpose of this

question is to eliminate all criteria that are obviously safety oriented

and to refer them to the associate Crew Safety Study (NAS9-12742) as

directed by Block 5. Criteria context will indicate, in most cases, if the

primary reason is to protect the crew from a hazard. The process has pro-

visions in later stages to identify subtle safety criteria or those that

were questionably safety oriented and permitted to proceed for further

analysis.
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Block 6: Does the criterion reflect or involve any of the compatibility

interfaces?

* Orbiter (including crew) payload-subsystem support element

* Orbiter-induced environment or characteristic

* Mission-induced or natural environment

* Payload-provided provisions for the interface

* Payload-induced environment or characteristic

* Payload envelope or mass properties characteristic

A guideline of the compatibility study was that compatibility criteria

involve interfaces and interactions. Compliance with this guideline con-

tributes to the limitation of the mandatory compatibility criteria popu-

lation and therefore to the reduction of payload integration costs. An

analysis of this guideline prompted the considerations shown in Figure 3-3.

Analysis of these factors, as the following paragraphs explain, resulted

in the structure of the Block 6 question.

The orbiter will provide support elements to the payload such as

electrical, physical attachment, and pointing/stabilizing which the pay-

load can utilize if necessary. These support features provide an inter-

face between the orbiter and the payload that affects payload/orbiter

operation and must be considered in payload design.

Within these support elements are intrinsic characteristics which

the payload must tolerate to assure proper payload operation. For example,
the payload must be designed to tolerate electrical support transient

characteristics. Physical attachment support includes characteristics

such as shock and vibration which the payload design must tolerate.

The payload will be subjected to environmental factors from the orbiter

and from natural or mission-induced sources intrinsic to the space environ-

ment. The orbiter will induce environments such as radiation, magnetic

fields, and other potentially undesirable elements of which the payload

designers must be made aware to assure proper payload operation. Similarly,

natural or mission-induced environments such as low gravity and pressure,

meteoroid impact, and atmospheric contamination must be considered.
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The payload will also be required to provide accommodations to assure

that the payload-orbiter interface is complete. A case in point is pay-

loads requiring EVA to complete mission operations. Special tools or

mobility aids must be provided as necessary. The payload will also be

required to provide certain instrumentation such as recorders and special

display equipment. These payload-provided equipments will interface with

the orbiter and must be specified so that proper interface design is

assured.

PAYLOAD

MISSION ENVIRONMENTS

ORBITER

Figure 3-3. Interfaces and Interactions Considered
for Compatibility

Assuring compatibility is a two-sided coin. Not only must efforts be

directed toward assuring proper payload operation, but equal concentration

must be made to assure that orbiter operations are not impaired by omitting

certain payload criteria. These criteria fall into the general category of
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criteria which are ofter called "hardware safety" criteria or requirements.

This study addresses a subset of that category; specifically, those criteria

levied on payloads to assure that nominal orbiter operations are not im-

pared by the payload. Typically, these criteria involve vehicle operations

interference resulting from support interface with the payload. Also, nomi-

nal vehicle operation rather than crew safety is of first concern in these
criteria. (Volume II of this study addresses that aspect of "hardware

safety" criteria where each criterion involves crew safety as the prime

consideration). Payload-induced characteristics and environments such as
size, weight, and payload-generated contamination are examples of criteria

elements pertinent to this category of criteria and must be considered for

systems compatibility.

Utilizing the considerations of Block 6 will determine if a given

criterion is, in fact, an applicable candidate compatibility criterion.

Criteria not falling into one of these compatibility categories are not

applicable to this study and are retained for future NASA use.

Block 7: Does the criterion reflect or anticipate a contingency situation?

A primary objective of this study is to determine the minimum, manda-

tory set of compatibility criteria. In doing so, prime consideration is

given to those design features that assure only basic compatibility of an

interface thereby bounding minimum costs. This means the minimum criteria

necessary for nominal operation and functioning of the payload or the

orbiter through the interface are of major concern. Then, all supplemen-

tary design features that are cost-benefit in nature can be levied at the

discretion of management to avoid possible problems or abnormal influences

that could impact operations. These criteria either assure crew safety

or enhance payload performance or mission success. Criteria of this type

receive a "YES" to the Block 6 question and are passed on to Block 12 for

further analysis. Those criteria which receive a "NO" may be mandatory
for compatibility and are passed to Block 8 for analysis.
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Block 8: Does the criterion address primarily the operation of the orbiter

or the payload?

This branching block is utilized to determine which side of the orbi-

ter-payload interface is being primarily affected so that further, more

detailed analysis can be made.

Blocks 9 and 10: Could the payload/orbiter function nominally if the
criterion were not satisfied?

The most appropriate test for determining if a candidate criterion

is mandatory is to analyze the consequence of not imposing the criterion.
If not imposing the criterion could prevent nominal, planned operation of
either the payload or the orbiter, the criterion must be considered manda-
tory for systems compatibility and go to Block 11. Criteria which receive
a "YES" to this question are not considered mandatory and pass to Block 12
for further analysis.

Block 12: Is a crew hazard possible if the criterion is not satisfied?

One of the initial steps in this process (Block 3) checked for

obvious safety criteria. Block 12 provides for another check so that,

after analysis, those criteria that emerge as subtle safety oriented can
be referred to the Safety Study for further analysis.

Block 13: Discretionary

The final block of the design process describes discretionary criteria--

those criteria subject to cost-benefit analysis. Criteria which reach this

point in the process are discretionary to shuttle management and involve
the following considerations:

* Configuration choices of components, assemblies, systems, etc.,

not required to assure compatibility

@ Enhancement of payload mission success probability over and

above that provided by basic systems compatibility

* Enabling payload performance at levels which would exceed

the performance levels dictated by baseline orbiter accommodations

* Other cost-benefit trades
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This area completes the analysis of a candidate design criterion. As

mentioned at the beginning of the design process discussion, an additional

requirement of the process is to produce a rationale with each categoriza-
tion determination. This is accomplished by documenting the path each

criterion takes through the process. The analysis surrounding each block

to which the criterion is subjected then becomes the rationale that supports

the final categorization.

3.3 VERIFICATION CATEGORIZATION PROCESS

The objective of verification is to assure shuttle management that

the payload has complied with a mandatory design criterion. The verifica-
tion process determines for each mandatory design criterion which verifica-

tion technique is considered sufficient by shuttle management as minimum,
mandatory design verification. In light of past spaceflight experience
coupled with the capabilities and low-cost objectives of the shuttle,

verification methods other than testing can and should be emphasized.
This is accomplished, as shown in Figure 3-4, by systematically analyzing

the mandatory design criterion.to determine if one of the other standard
verification methods (similarity, analysis, inspection, demonstration)

will suffice. Utilization of these other verification methods is not new,
(References 6 and 7); however, as brought out here and in the recommenda-

tions from Precedent Practices Research, with the experience already obtained
from space flight, employment of these methods to a greater extent should
be possible. Since these methods are generally less costly to apply than
testing, an overall cost-savings can be realized.

If the verification method determined is other than testing, then

testing to verify the criterion is considered discretionary. Testing may

be performed at the discretion of payload management to further substan-

tiate the adequacy or reliability of the design. The following is a

detail.ed explanation of each of the verification methods specified in

Figure 3-4.
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Figure 3-4. Verification Categorization Process Logic Flow
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Block I: Similarity

Verification by similarity is used when the article or payload is

substantially similar or identical in design, manufacturing processes, and

quality control to another article that has been previously qualified to

equivalent or more stringent standards. Verification by similarity may

pertain to characteristics such as material, configuration, functional

element or assembly. As indicated by the JSC R&QA Office Test Section,

for example, equipment verified for flight on manned aircraft (such as the

ERAP program) could be sufficiently qualified by similarity for spaceflight.

Block 2: Analysis

Analysis may be used in lieu of testing whenever it can be shown by

generally accepted analytical techniques that an article will meet the

applicable technical requirements. Increased design margins, made possible

by shuttle weight and volume capabilities, will allow verification by

analysis where testing was previously required.

Block 3: Inspection

Inspection can be used to verify the construction features, compliance

with drawings, workmanship, and physical condition of the article. This

method is utilized at design reviews and customer acceptance readiness

reviews to verify design requirements.

Block 4: Demonstration

Demonstration can be used to verify such requirements as service and

access, handling, convenience, and ease of operation. This method is used

extensively in verifying designs that involve a man-machine interface such

as crew-payload interface during EVA activities.

Block 5: Combination

Verification by combining two or more of the previously discussed

methods may be utilized if one method does not provide minimum acceptable

verification.

If these verification methods are not sufficient to verify a mandatory

design criterion, then testing must be employed as the verification method.
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4. CANDIDATE CRITERIA DETERMINATION

The objective of this portion of the study was to identify, define,

and structure compatibility design criteria which would be subjected to

the categorization process, discussed in Section 3, for categorization as

either mandatory or discretionary. The following subparagraphs discuss

the approach taken in this effort.

4.1 APPROACH

One of the initial tasks of this effort was to define, within the

context of the study, the structure and general characteristics of a cri-

terion. It was determined that a criterion should possess the character-

istics noted in Table 4-1 in order for the study results to meet study

objectives.

Table 4-1. Criterion Characteristics

* A criterion should be removed from a strict specification
statement, i.e., non-quantitative and should be a standard
to which payloads would be designed.

* The criterion should indicate that imposing the criterion
will require compliance with detailed specifications and
what the general content of the specifications will be.

* A criterion should clearly identify the incompatibility
and/or interface being addressed.

e A criterion should be user oriented.

Before criteria could actually be structured, the data and information

that would eventually form the basis of the criteria had to be collected

and evaluated. A comprehensive orbiter-payload subsystem analysis was

also performed to assure that the elements of compatibility between the

orbiter and the payload had been considered. Finally, criteria were

structured to conform to the study requirements. Each of these steps is

discussed in detail in the remainder of this section.
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4.2 DATA COLLECTION AND EVALUATION

The bulk of supporting data and information that subsequently comprised

the criteria was gathered during the Precedent Practices Research portion of

the study. Few systems compatibility criteria were found to exist in the

documentation. The information consisted primarily of specifications, re-

quirements, guidelines, and other specific program information (see Table

2-3) along with relevant, non-program data sources (References 6 and 23).

Of the non-program data sources, the Manned Spacecraft Criteria and

Standards document, MSCM 8080, was particularly relevant because of its

significance as a stand-alone guiding document for present and past manned

spacecraft programs. This information, coupled with the NASA-supplied

shuttle model and appropriate shuttle payload studies documentation

(References 1 and 2), formed the basis for criteria determination.

Approximately 350 data items were accumulated. Within these data

items, much redundancy and overlap existed. However, by researching many
programs, some assurance that coverage of the interface areas, subsystems,
and other compatibility elements between payload and orbiter was realized.

Additionally, an interface design analysis was performed to add to

this assurance as discussed in Subsection 4.3.

4.3 INTERFACE DESIGN ANALYSIS

The orbiter-payload interface consists of the following general con-

siderations defined in Subsection 3.2:

* Orbiter payload-subsystems support

* Orbiter-induced environments or characteristics

* Payload-provided provisions for the interface

* Payload-induced environments or characteristics

* Mission-induced or natural environmental factors

* Payload envelope or mass properties characteristics

In order to develop criteria associated with each of these interface areas,
an interface design analysis was performed to determine the design elements
within each interface area.
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At present, the family of sortie payloads which will fly on the shuttle

does not exist. Although individual, proposed sortie payloads do exist,

these few payloads do not exhibit the complete set of interface character-

istics that the family of sortie payloads might possess. Therefore, an

analysis was made to determine the typical subsystems, characteristics,

and other considerations conceivable of any given sortie payload. The re-

sults of this analysis, shown in Table 4-2, provided a generalized view of

a sortie payload and formed the baseline for a detailed interface design

analysis. Initial direction for structuring, classifying, and managing

the information that had previously been gathered also resulted from the

generalized sortie payload effort.

Utilizing the generalized payload analysis, an in-depth analysis was

performed of the subsystem interface parameters and characteristics which
impact the design and performance of spacecraft payloads. The results of

this analysis, shown in Table 4-3, comprise a complex interrelationship of

design elements and considerations. These elements and considerations,

along with substantiating design rationale and required verification

methods, are shown within each subsystem/interface area.

These two analyses, together with the information obtained from

Precedent Practices Research, provided the supporting data necessary to

structure criteria for each of the sortie payload interface areas except
for some specific orbiter-provided and required payload-provided support

provisions and equipment. The NASA-provided shuttle information model

and the Space Shuttle Baseline Accommodations for Payloads document

(Reference 24) were utilized to determine these elements. The orbiter

remote manipulator system (RMS) was examined as part of this effort and

adjudged not to be applicable to this sortie payload criteria study. Also,

the crewmen's pressure garment assemblies, although weight-chargeable to

payloads, are not payload equipment and thus are inappropriate for inter-

face definition within the sortie payload scope of this study.

The results of the interface design analysis accomplished two purposes.

First, it established a basis for payload subsystem and interface area

selection used for classification and control of criteria. Second, the

analysis identified the elements of interface within each subsystem or

interface area that were subsequently used in criteria determination:

These two items are discussed further in the following two subsections.
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Table 4-2. Generalized Sortie Payload Subsystems and Considerations

FLUID SYSTEMS CONTROLS & DISPLAYS ENERGY SOURCES ELECTRICAL/ELECTRONIC

- Liquid Loop - Control Stimuli - X-Ray - Power Circuitry
- Valves & Lines - Display Responses - Intense Magnetic - Batteries
- Hydraulics - Computer Operations Flux - LV + HV Supplies

- Radio Frequency (RF) - AC Supplies
- Onboard - Vac/Solid-State

Nuclear Particles - RF Transmitters
- Meteoroids - Redundant Circuitry

THERMAL - Filters
- EMI

OPTICAL SYSTEMS - Conduction TOXIC AGENTS - Fuel Cells
- Liquid Loop/ - Solar Arrays

- Optics Cold Plate - Reagents
- Film - Heaters - Microbes

- Insulation - Fuels & Oxidizers CREW INVOLVEMENT
- Radiation - Operating Fluids

- EVA/IVA
- D&C Interface
- Direct Operation
- Touch Temperatures

PNEUMATICS POINTING/AIMING

- Pressure Vessels - Gimballed Platforms
MECHANICAL - Extending Mechanisms - State Vector

- Valves & Lines Circuitry ENVIRONMENT
- Hatches - CMG
- Structures - Pressure
- Cryogenic Coolers - Vibration
- Extendable Booms - Acceleration
- Antenna INSTRUMENTATION/TLM PYROTECHNICS - Thermal
- Gyros - Humidity
- Shields - Data Circuitry - Device Actuators - Acoustical

- Transducers - Boom Jettison - Natural Radiation
- Isolation - Equipment - Contamination

Protection - Shock
O
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Table 4-3. Payload Interface Design Analysis

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

COMMUNICATIONS/ A. FREQUENCY ALLOCATIONS The communications subsystem designers Analysis, test
DATA 1. Carriers will require these definitions to select

components. Since a manned vehicle will
2. Modulation have voice, beacon and telemetry fre-

3. Side Bands quencies, the interference problem must
be considered in the selection of center

4. Filter/Attenuation frequencies, as well as the side-banding
Requirements effects. A consideration in the defini-

5. Interfering Signal tion of antennas and power levels is the

Level Limits percent of communication coverage de-
sired throughout the orbit. Since the

B. ANTENNA REQUIREMENTS ground stations' locations and capabili- Analysis

I. Gain Characteristics ties are known, the orbiter equipment is
selected accordingly.

2. Main Lobe Pattern

3. Allowable Side-Lobes

4. Polarization/Phasing

5. Orientation of Axis

a. Fixed
b. Drive Pattern
c. Tolerance of

Alignment

C. TRANSMITTER POWER Test

1. Carrier-to-Noise
Ratio

2. Beamwidth

3. Single Carrier Power

4. Multi-carrier Power
Degradation Rate

5. Beacon Modes

6. Amplitudes

a. Peak
b. Modulation
c. Attenuation re-

quirements

7. Modulation Losses

D. RECEIVER POWER Analysis, test
1. Up-link Threshold

2. Noise Figure

3. Sensitivity

4. Center-Frequency
Stability

E. ELECTRICAL REQUIREMENTS Electrical requirements must be stipu- Analysis

1. DC Voltages lated to allow power budget to be formu-
lated.

2. Power Consumption

a. Turn-on
b. Peak
c. Average
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

COMMUNICATIONSi F. DATA HANDLING The data gathering rate and data trans- Analysis
DATA mission rate relate to ground station
Continued) . Data Gathering Rate coverage. If the ground station(s)

2. Data Transmitting Rate accepting data cannot record all of the

3. Data Storage Require- data on a single orbital pass of the
ments vehicle, data storage capability must

increase to preclude excessive loss of
4. Data Conversions data. The format of transmitted data,

a. Analog-to-Digital i.e., bits per word and words per frame,
b. Digital-to-Analog establish the required hardware capabi-
c. Encoding lity and data rates.

(encrypting)
d. Decoding

(decrypting)
e. Minimum Conversion
f. Format(s)

5. Maximum Allowable
Data Loss

a. Storage Overflow
b. Modulation Loss
c. Signal Degradation

e Low power
* Interference

CREW A. CONSTRAINT REQUIREMENTS Crew constraints must be provided to Analysis
1. Launch Profile allow personnel to move about the vehi-

cle and to operate the experiments in a
2. Work-Station/ reduced-gravity environment. Such con-

Walkway Aids straints are for both safety and conve-

3. Extra-Vehicular nience of task performance.

Activities

4. Re-entry & Landing
Profile

B. PERSONNEL TASKS The demands upon personnel time must be Task analysis
1. Orbiter Functions budgeted to provide a balance of work/

rest without extending the task require-
2. Experiment Operation ments of any crew member. The tasks

3. Experiment Deployment must be analyzed against the mission
timeline to eliminate conflicts.

4. EVA

C. PAYLOAD STRUCTURE The payload structure and orbiter-to- Analysis

i. Crew Access Require- payload interface will be designed to
ments facilitate the required personnel move-

ments and tasks.
a. Monitor
b. Adjust
c. Deploy

2. Intra-Vehicular
Mobility

a. Walk-Way/Crawl-
space

b. Safety
c. Strength
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

CREW D. PAYLOAD LAYOUT The payload must be arranged to maximize Analysis
(Continued) 1. Visibility personnel efficiency at experiment tasks.

2. Display/Readout
Devices

3. Task Analysis and
Facility of Access

E. ENVIRONMENT The primary concern of the vehicle-to- Analysis

1. Vehicle/Payload payload environment design is crew
safety and comfort without undue expendi

a. Pressurized/air- ture of space, weight and funds.
locked configura- Lighting must be adequate for flight
tions duties such as monitoring displays,

b. Thermal extremes adjusting/calibrating equipment and
allowable recording flight/experiment data.

c. Acoustic limits
d. Oxygen system
e. Lighting require-

ments

F. FACILITIES The crew facilities must provide ade- Analysis and

Storage quate storage, comfort, and safety inspection of
features to support the crew for the drawings

a. Rations duration of the mission.
b. Water
c. PGA

2. Comfort

a. Waste disposal
b. Rest

ELECTRICAL A. VOLTAGE The electrical subsystem is the primary Test

1. DC system during orbital operations since
it provides power for communications,

a. Nominal Level(s) experiments and life support system,
b. Maximum
c. Minimum
d. Allowable Ripple
e. Regulated Bus

Requirements

B. POWER CAPACITY The electrical system must produce Test

1. Peak Wattage enough power to sustain minimum opera-
tions and critical functions. The

2. Normal Usage total mission success will depend a

3. Minimum Requirement great deal upon the adequacy of power.

C. CURRENT Current values are a design guide, Test

i. Peak both for electrical requirements and
for overload protection devices.

a. Cold In-rush
b. Hot In-rush

2. Steady-State Average

D. TRANSIENTS Electrical transients should not Test

1. Frequency produce a critical failure in the
system nor a major degradation of

2. Amplitude mission data.

3. Duration
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

ELECTRICAL E. FREQUENCIES Frequencies should be maintained Test
(Continued) 1 Clocking stable to allow other subsystem

. Ccomponents to function regularly.
a. Nominal
b. Allowable Varia-

tion
c. Digital Rates

F. SOURCE The selection of power source should Test

1. Orbiter consider mission length, power require-
ments, source weight and the environment

2. Self-Contained Backup/complementary sources should be

3. Test Access evaluated.

G. OVERLOAD PROTECTION Overload at subsystem components should Test
not cause failure of the source, the
main bus, nor other subsystems.

H. CABLE DESIGNS, INTERFACE Cables should be designed to distribute Test

1. Connectors the power as required to other subsystems
in a reliable, non-interfering manner.

2. Shielding

a. Protective
b. EMC

ELECTROMAGNETIC A. SIGNAL INTEGRITY The degree of allowable EMI is stipu- Analysis, test,
COMPATIBILITY lated by the signal integrity required drawing inspec-
(EMC) I. Data Degradation in the system/subsystem. tion

a. Allowable dB
margin

2. False Clock Signals

3. Frequency Variation

a. Allowable system
range

b. Ordnance compati-
bility range

c. Transient varia-
tions, allowable
limits

4. Pulse Shape Variation

B. SOURCE CONTROL Self-generated EMI will be suppressed Analysis, test

1. Internal Self- by design and fabrication; external

generated EMI requires shielding and grounding tech-
niques.

2. External Source
Susceptibility

C. GROUNDING REQUIREMENTS Individual subsystems require different Analysis

1. Telemetry grounding designs, dependent upon the
respective frequency.

2. Primary Power

3. Heater Circuits

4. Command/Control
Circuits

5. Ordnance Circuits

6. Data Lines

7. RF/Communication
Lines

8. Sensor Circuits
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

(EMC) D. PARTS, MATERIALS & The specification of approved parts, Analysis, test
(Continued) PROCESS CONTROLS materials and processes will largely

1. RF Bonding dictate the level of EMC achieved at
the system level.

a. Maximum joint
impedance

b. Joint cleanliness
c. Mechanical strap-

ping

2. Signal Separation

a. Cable routing
b. Cable configura-

tion
c. Shielding
d. Surface coating
e. Grounding
f. Filtering

3. Electrochemical Protecting against electrochemical Analysis
Corrosion Control corrosion is a design requirement

a. Isolation or Non- and can be controlled by proper
Use of Dissimilar materials selection.
Metals

* Coating
* Bonding

FLUID SYSTEMS A. PRESSURE Fluid systems present a design problem Test

1. Operating Limits where leakage allowances are zero or
very low. Fluid leaks are difficult

2. Maximum Allowable to repair; if the fluid is an oil or
Surge fuel leak, the mission can be endan-

3. Maximum Allowable gered by improper design.
Leakage

4. Control Function
Levels

5. Relief Levels

B. CIRCUIT REQUIREMENTS Circuit components are mutual; each Test

1. Reservoir Capacity component size/capacity relates to the
subsystem capacity and operating demands

2. Supply Line Routing/ on the subsystem.
Size Limits

3. Return Line Routing/
Size Limits

4. Vent and Drain
Accommodations

5. Filtration

6. Flow Control Devices

7. Slosh Control

C. ELECTRICAL REQUIREMENTS The fluid system may require electrical Test

a. Primary Power power for pumping or circulating action.
b. Heater Power Liquids may require heater protection

against solidifying temperatures or a
D. THERMAL INSULATION thermal insulation plan.

REQUIREMENTS
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

ALIGNMENT/ A. FIXED ATTITUDE Payload alignment may be critical, Drawing inspec-
POINTING 1. Reference Location since it orients the experiments to tion and test

and Axes their design plane and to the various
mission profile forces.

2. Allowable Error
Limit

B. CONTROLLED ATTITUDE Some payload components may require a Test
stabilized or driven attitude to main-

1. Primary Reference tain vertical, target reference or a
2. Backup/Secondary skewed-axis orientation. Such require-

Reference ments increase design complexity of

3. Axial Excursion structures/components and influence

Limits experiment layout and power requirements

4. Precession or Drive
Rate Requirements

5. Damping Ratio

6. Correction Rate

7. Nominal Attitude

C. POINTING COORDINATES Some payload experiments will require Test

I. Reference aiming/tracking on a reference to pro-
duce proper results. These require-

2. Elevation Limits ments will specify some structure design!
3. Azimuth Limits for access or vision fields and will

necessitate close control of either the
4. Pointing Error Limits reference or the pointing device.

5. Scheduled Target
Changes

6. Frequency of
Pointing Change

7. Drive Rates Required
to Maintain Point

PAYLOAD A. CHECKOUT MODES The checkout of the payload will occur Test
CHECKOUT 1 Pre-Launch in phases throughout the system schedule.

Flight conditions can be simulated for
2. Ascent checkout of the payload prior to launch.

3. Orbital

4. Re-Entry

5. Descent

B. FREQUENCY The frequency and sequence of checkout Analysis

I. One-Time Check are specified to allow an accurate
checkout procedure to be written.

2. Cyclic/Periodic

3. Event-Related

C. SEQUENCE OF ACTIONS Analysis, test.

D. SPECIAL INTERFACES Special interfaces will require special Inspection, test

1. Test Cables, test equipment and possibly structural

Umbilicals, In-flight designs to permit access.

Jumpers'

2. Instrumentation

3. Calibrate/Simulate
Fixtures

4-10



2221 5-H14-RO-00

Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

PAYLOAD E. ACCEPTANCE CRITERIA The acceptance criteria will provide a Analysis, test
CHECKOUT 1. Parameter/Result List decision on payload readiness and
(Continued) 2performance during checkout.,

2. Acceptable Limits

F. DATA REQUIREMENTS Payload checkout will require printout/ Documentation

1. Hard-Copy Records readout devices to report in-process
or final results.

2. Magnetic Records

3. Photographic Data

4. Computer Storage/
Transfer

5. Analog-to-Digital
Conversion

6. Digital-to-Analog
Conversion

7. Visual Display

ENVIRONMENTAL A. TEMPERATURE The environment determines to a large Analysis

1. Ground transport, extent the design of the subsystem
storage and handling components. Temperature extremes

affect the choice of materials and
a. Maximum special heating/insulating techniques.
b. Minimum
c. Duration

2. Mission

a. Maximum
b. Minimum
c. Periodic excur-

sions

* Differential
* Period

B. PRESSURE The pressure environment ranges from Analysis, test

1. Maximum Level sea level static pressures to low
pressure orbital values. The control

2. Orbital Level of pressures dictates seal selection,

a. Internal Minimum material strength and special pressuri-

b. Internal Ambient zation components.

c. Venting/Equaliza-
tion Levels

d. Stop-Vent Level
e. Allowable (maxi-

mum) Leakage Rate

C. SHOCK The shock environment establishes special Analysis, test

1. Maximum G-Loading component mounting to protect fragile
or precision elements.

2. Characteristic Shape

a. Rise Time
b. Delay Time

3. Plane of Application

a. Discrete Axis
b. Random
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

ENVIRONMENTAL D. VIBRATION Vibrations can destroy the accuracy Analysis, test
(Continued) . Frequency Range and even abort the mission if not

considered fully during design phases.
2. Amplitude(s)

3. Duration

4. Octave Rate(s)

5. Plane of Application

a. Discrete Axis
b. Multi-Axis
c. Random

E. RADIATION Radiation levels from all sources have Analysis, test
i. Permissible Ambient to be considered since radiation has aLevel cumulative effect upon personnel.

2. Sources

a. On-Board Equipment
b. External Impinge-

ment

e Nominal Rate
* Maximum Rate
s Duration

F. FOREIGN OBJECTS, The incidence of foreign objects such Analysis
IMPACTING as dropped tools, launch-thrown debris

1. Source and meteorites should not endanger the
mission.

2. Size

3. Velocity

4. Occurrence Internal

G. FOREIGN SUBSTANCE, Contamination of experiment samples, Analysis, test
CONTAMINATING payload equipment and crew support
1. Material devices dan reduce mission success

and should be considered during
2. Density/Size the design phase.

3. Source

4. Longevity/Duration

5. Residue

6. Humidity Limits

7. Salt Spray Limits

8. Dust Limits

9. Outgassing from
Internal Components,
Limit

H. ACOUSTIC Noise levels are controlled to reduce Test

1. Maximum Ambient Noise crew fatigue and preclude hearing
Level impairment.

* Octave Band Portion
a Center Frequency

Versus Noise Spectra

2. Maximum Peak Level

a. Flight Buffeting
b. Ordnance Activities
c. Equipment Operating

Modes
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Table 4-3. Payload Interface Design Analysis (Continued)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

ENVIRONMENTAL J. MAGNETIC Magnetic fields will be encountered; Test
(Continued) 1. Stray Fields in the case of computer memory cores,

propagated. These fields should not
a. Flux Density influence experiment data and should be
b. Duration controlled as far as possible to prevent

2. Periodic/Permanent communication interference.

Fields

a. Operating

* Permeability of
Materials

* Remanence
* Maximum Accept-

able Flux Den-
sity or Field
Strength

b. Non-Operating

a Residual Field

3. Mapping Test
Requirements

K. OXYGEN LEVEL Oxygen levels are essential to crew Analysis, test
I. Crew members and could be required for

biological experiments.
a. Minimum Require-

ment

e Rate of Supply
* Total Volume

b. Maximum Allowable

2. Experiment Require-
ments

L. LIGHT LEVELS Light will be required for crew opera- Analysis and
1. Source tions; the level can be designed to test

be controlled for optimum task lighting.
a. Solar
b. Orbiter-Generated
c. Experiment Compo-

nent-Generated

2. Wavelength(s)

3. Minimum Requirements

4. Allowable Variations

a. Periodic
b. Maximum Level

ORDNANCE A. ACTUATION METHOD The ordnance subsystem is a critical Analysis, test
1. Automatic Sequence category since its performance is

usually required for mission success
2. Command and its presence presents a safety

a. Crew hazard.

b. Ground Station Positive actuation is designed into
3. Dual Requirement the system by redundancy of circuits

a. Selective and explosive devices.

b. Required
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Table 4-3. Payload Interface Design Analysis (Concluded)

SUBSYSTEM/ VERIFICATION
INTERFACE AREAS ELEMENT SET RATIONALE METHOD

ORDNANCE B. ACTUATION SEQUENCE Analysis and
(Continued) 1. Safing/Arming test

2. All-Fire

3. Discrete Fire

4. Fire Intervals
Schedule

C. VOLTAGE REQUIREMENTS Sample test
1. Minimum Firing Level

2. Sustained Voltage
Level

3. Minimum Rise Time
at Initiation

STRUCTURAL/ A. ENVELOPE SIZE, LIMITS The structure and mechanical subsystem Drawing inspec-
MECHANICAL B. INSTALLATION supports the total mission. System tion, part

elements are maintained in specified inspection,
1. Method relationships to each other by the assembly test
2. Interface Requirements structure; the crew safety depends on

the structure; and flight attitudes are
3. Attitude/Position influenced by the structure moments and

center-of-gravity.

C. MASS PROPERTIES/WEIGHT Test
ORIENTATION DYNAMICS

D. CENTER-OF-GRAVITY Test
REQUIREMENTS

E. ACCESS REQUIREMENTS Drawing inspec-
1. Ground Operations tion, test

2. Flight Operations

F. MAINTAINED ATTITUDE OR Test
ORTHOGONALITY REQUIREMENTS

G. DEPLOYMENT REQUIREMENTS Requirements for extending or ejecting Test
1. Excursion Axis/Plans experiments increases the structural/

mechanical design complexity. The
2. Travel Limit(s) stipulated limits of such deployments
3. Frequency of Deploy- allow the design to be adequately

ment and Schedule prepared.

4. Rate of Deployment/
Retraction

H. MATERIALS Material selection should exclude Analysis, test
1. Non-allowable incompatible materials, separate or

Structures/Materials eliminate dissimilar metals with
galvanic potentials, control the use

2. Requirements and of coatings and bondings, and assure
Allowances adequate strength for all environmental

a. Coatings requirements.

b. Bondings and
Adhesives

c. Paints

3. Strength

J. MARKINGS AND Inspection
IDENTIFICATIONS

K. RESONANCE Structures and mechanisms should not Test
i. Natural Frequencies demonstrate natural frequencies and

resonances in the range of operating
2. Transmissibility vibration frequencies.
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4.4 SUBSYSTEM DETERMINATION

The subsystems and considerations of the interface design analyses

were necessarily general because sortie payloads have not yet been fully

specified. In order to more closely correspond to the orbiter subsystem

and interface area nomenclature, the following categories for payload

criteria management and control were selected:

* Communications * Guidance, Navigation
* Cryogenics and Control
e Data Processing * Instrumentation

and Software * Onboard Checkout
* Displays and Controls * Payload Environment
* Electrical Power * Pyrotechnics
* Environmental Control e Structures

and Life Support * Thermal Control
* Extravehicular/Intra- * General

vehicular Activity

This selection should aid in understanding the criteria categories and
therefore assist in the usability of the criteria.

4.5 CRITERIA SYNTHESIS

The preponderance of information gathered to support the criteria
determination task were not criteria. The data consisted primarily of
specification statements, guidelines, and other requirements. This in-
formation was sorted into appropriate subsystem categories and the redun-
dant and overlapping information was deleted (which reduced the volume of
information considerably). At this point, those data which were obviously
not applicable to the compatibility study were also omitted. For instance,
information which involved ground support equipment, safety, procedures,
or non-sortie elements was rejected or referred to the Crew Safety Criteria
Study (Volume II). In effect, the first three blocks of the design cate-
gorization process were implemented to a certain degree. Those items de-
leted during this effort, as well as all other rejected information, were
retained for NASA use.
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The iterative process of criteria determination continued by com-

bining data elements where appropriate, and structuring the information

into proper syntax for criteria presentation. Concurrent with the latter

stages of the synthesizing effort, candidate criteria were subjected to

the categorization process. This accomplished two purposes. It enabled

the criteria syntax and categorization processes to be adjusted for clarity

and completeness. It also enabled cross-correlation between the processes

and criteria to assure that the basic interfaces for systems compatibility

were being addressed.

The synthesizing task reduced the original data from Precedent

Practices Research and the interface design analyses to approximately 50

criteria. These criteria were then subjected to the categorization pro-

cesses (Section 3) for further analysis and categorization as mandatory

or discretionary criteria.
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5. SYSTEMS COMPATIBILITY DESIGN AND VERIFICATION CRITERIA

The principal results of this study are presented in this section.

They are the recommended minimum set of criteria considered mandatory, at

any cost, to achieve orbiter-payload systems compatibility. A partial

listing of the unbounded set of discretionary criteria (see Table 1-2) are

also presented. As required, rationale for each criteria categorization

is included along with the recommended minimum verification level for

mandatory criteria.

The total of 34 mandatory and 7 discretionary criteria are distributed

within the 15 subsystem/interface areas as shown below. The criteria are

Table 5-1 Table 5-2
Subsystem/Interface Area Mandatory Discretionary

9 Communications 4 --

* Cryogenics 1 --

* Data Processing and Software 1 --

* Displays and Controls 1 --

* Electrical Power 4 --

* Environmental Control and 1 --
Life Support

* Extravehicular/Intravehicular 1 --
Activity

* Guidance, Navigation and 2 --
Control

* Instrumentation 1 5

* Onboard Checkout 1 1

* Payload Environment 1 --

* Pyrotechnics 1 --

* Structures 9 1

* Thermal Control 2 --

* General 4 --
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presented in summary in Table 5-1 and in their entirety in Tables 5-2 and

5-3. Specific MSCM 8080 (Reference 23) standards which contributed to

criteria development are referenced. Also, to denote whether orbiter or

payload operation is of primary concern, the word "orbiter" or "payload"

is underlined in the rationale of each criterion. Criteria which address

only payload operation are further identified with the note "This criterion

may be controlled by payload management". This indicates that even though

mandatory criteria are levied by shuttle management to provide for nominal

operation, actual control and management of the criteria after being levied

may be exercised by payload management. The criteria and rationale pre-

sented are the result of the criteria structuring effort described in

Section 4 and the subsequent subjection of these criteria to the design and

verification processes discussed in Section 3.
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Table 5-1. Systems Compatibility Design Criteria Summary

COMMUNICATIONS (4) ECLS (1) PYROTECHNICS (1)

* Commands IM,-- * Atmospheric Maintenance IM,-- a Generated Environment IM,--

-Uplink -Contamination

-PCDS EVA/IVA (1) -Shock

-Onboard -Thrust

# TV Payloads IM,-- * Astronaut Capabilities IM,--

-Hardware -Reach
-Signal Characteristics -Visibility

* Voice IM,-- -Torque/Force STRUCTURES (10)

* Carrier Frequencies lM,-- -Transferables

e Mounting Provisions IM,--
GN&C (2) -Location, Attachment

CRYOGENICS (1) a Orientation & A!gnment 1M,--
a Realtime Data IM,-- * Orbiter-InducEl Environ.IM,--

* Reactants IM,-- -Data Characteristics -Acceleration

-Purity 9 Pointing/Stabilizing 1M,-- -Shock

-Cleanliness -Accuracy -Vibration
-Stability -Acoustical
-Deadband -Thermal

-Nuclear Radiation

DATA PROCESSING & SOFTWARE (1) INSTRUMENTATION (6) -Magnetic Fields

-Contamination

s Computation Support IM,-- e Downlink IM,-- -Structural Distortion

-RAU e P/L Envelope & Mass

-Hardware Properties IM,--

-Signal Characteristics e Boom-Mounted Equipment lM,--
DISPLAY & CONTROL (1) e Transducers --,lD * Fields-of-View IM,--

-Operating Range e Materials IM,--

* Panels IM,-- -Resolution e Flaking 1M,--

-Hardware * Telemetry --,4D e Service Panels 1M,--

-Electrical Characteristics a Decompression --,1D

ONBOARD CHECKOUT (2)

ELECTRICAL POWER (4) * Go/No-Go Criteria 1M,--

-Checkout Command Decoder THERMAL CONTROL (2)
* Power Sources IM,-- -Stored Program Processor

-Hardware e Payload Viewing --,1D e Heat Transport IM,--
-Voltage
-Transi ents -Coldplate Hardware

-Impedance P/L ENVIRONMENT (1) Temperature Limits lM,--

-Grounding

* EMC and RF iM,-- 9 Natural Environment lM,--

-Conducted -Low-g & Pressure
-Radiated -Space Radiation GENERAL (4)

* P/L-Induced
Characteristics lM,-- -Space Thermal

-Load Impedance -Meteoroid * Orbiter Support Limits IM,--

-Transients -Space Magnetic Fields * P/L-Induced Forces,
Impulses IM,--

-Capacitance -Humidity P/L Induced
e P/L Induced

-Feedback -Solar Illumination Environments lM,--
a Corona lM,-- -Contaminations a Waste Storage ,M,--

M = Mandatory D = Discretionary
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Table 5-2. Mandatory Compatibility Design Criteria

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

COMMUNICATIONS

COMM-I. Payloads that require This design criterion is applicable to sortie pay- Test
ground and/or orbiter commands loads that require orbiter support for payload
must be designed to interface commanding. Crew hazards are not a consideration
with the GFE Payload Command of this criterion nor is a contingency situation
Decoder Subunit (PCDS). The involved. Adhering to this criterion assures
standard PCDS interface require- that the payload can be commanded in a nominal
ments are: interconnecting manner and is therefore mandatory.
hardware and locations; cable
type and size; command signal
levels, both on and off states;
number and type of commands
required; and impedance
matching.

COMM-2. Payloads requiring This design criterion for sortie payloads which Test
orbiter support for display produce TV signals is applicable to those payloads
and/or downlink transmission of that require orbital support to transmit those
TV signals must interface with signals to ground or to the orbiter displays.
specified orbiter design con- This criterion would be a normal requirement
figuration. This interface must for payloads which require this support and
be compatible with the inter- is not imposed to circumvent a contingency or
connecting hardware and the abnormal situation. If the payload design
following electrical signal for this interface is improper, payload
characteristic/requirements: operation would be non-nominal; therefore,
data formats, bit rates, opera- the criterion is mandatory.
tional modes, coding accuracy,
input/output load impedance,
duty cycle, and the active and
quiescent operating voltages.

COMM-3. Sortie payload elements, This orbiter payload-support element is provided Test
requiring two-way voice communi- for those payloads which require voice communica-
cations with the orbiter crew tions. Sortie payload design is affected by this
and/or ground, must be designed support element in that hardware connection, cable
to interface with the orbiter size, length, and type along with signal charac-
Mission Specialist Station teristics must interface properly with the stand-
through the standardized audio ardized orbiter equipment in order to receive and
stations located in the payload transmit voice communications. Voice support
bay with respect to inter- would be used in the normal operation of the pay-
connecting hardware, impedance load and it is mandatory that payloads adhere to
matching, and driver voltage. this criterion.

COMM-4. Payload-transmitted Carrier frequencies of payloads and the orbiter Inspection/
carrier frequencies must be that are too close could cause interference to Test
utilized that allow sufficient occur in orbiter-to-ground voice and data trans-
bandwidth separation between mission or in payload communications trans-
payload and orbiter carrier missions. This interference could prevent nominal
frequencies to preclude inter- operations of either the orbiter or the payload
ference. Orbiter carrier fre- and it is therefore mandatory that payloads be
quencies and permissible pay- designed to adhere to this criterion.
load carrier frequencies will
be specified to assure proper
allocation.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

CRYOGENICS

CRYO-1. Payload elements which Payloads, like sortie laboratories, may utilize Inspection
utilize cryogenic reactants fuel cells to provide power. These power sources
supplied by the orbiter must be utilize cryogenic reactants and can be simultan-
designed to interface with the eously loaded from common shuttle/payload umbili-
interconnecting hardware and cals. The payload must be designed to assure that
must be able to operate at speci- the reactant plumbing interfaces properly with the
fied reactant purity and systems orbiter plumbing so that the payload reactant
cleanliness levels. (See MSCM storage tanks can be loaded. If the payload fuel
8080, No. 78.) cells utilize orbiter reactants, the plumbing hard-

ware must also be proper to assure that reactants
are supplied to the payload fuel cells. Payload
systems cleanliness requirements must meet and
reactant purity requirements must not exceed
the orbiter specifications. The considerations
of this criterion, therefore, impact nominal
operation and are mandatory for payloads that
employ fuel cells.

DATA PROCESSING AND SOFTWARE

DP&S-1. Payloads requiring the Payloads may utilize the orbiter computer for real- Test
orbiter payload and performance time data computation and manipulation for data
monitoring computers for compu- display and other purposes. In order to utilize
tation support must be designed the orbiter computer support, the payload will
to interface with the orbiter have to properly interface with the orbiter com-
data processing and software puter system through input/output units. The
subsystem through the input/ payload must be designed to orbiter standards for
output units with respect to all each of the specifications or nominal payload
hardware and software specifi- operation will not be possible. Therefore, the
cations. criterion is mandatory.

DISPLAYS AND CONTROLS

D&C-1. Instrumentation and con- Sortie payload design must be compatible with Test
trol panels provided by the pay- orbiter space allocation and electrical char-
load for location in the Mission acteristics in order for the payload hardware to
Specialist Station, Commander/ fit and operate properly with the orbiter. Incom-
Pilot, or Payload Specialists patibility at this interface could prevent pay-
Stations that require orbiter load information from being received and/or the
support for power or data dis- payload from being controlled. Since nominal pay-
tribution must be designed to load operation would be impaired if this interface
interface with orbiter configu- was improper, the criterion is mandatory.
ration and must be compatible
with the orbiter space allocated.
The orbiter power configuration
will specify the maximum power,
voltage levels, ripple and tran-
sients, source impedance, and
return grounding requirements.
The data distribution configura-
tion will specify the cable size
and type, signal levels, duty
cycle, number of functions, and
impedance matching requirements.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

ELECTRICAL POWER

ELEC-1. Payloads requiring DC The primary reason for this design criterion for a Test
power to be supplied by the sortie payload is to assure nominal operation of
orbiter must be designed to the payload. This criterion reflects an orbiter
interface with specified orbiter subsystem support element along with the accom-
DC power source characteristics panying orbiter-induced characteristics of that
such as: type of interfacing support element and is therefore applicable.
cables and connectors, maximum Each of the design elements or characteristics
power available, types and listed in the criterion is expected to be encoun-
levels of voltages, voltage tered during normal operation; therefore, the
ripple and transient require- criterion is being imposed to assure nominal pay-
ments, source impedance, and load operation. Nonconformance to any element of
power return ground concepts, this criterion would prevent the payload from

functioning nominally; therefore, the criterion
is mandatory.

ELEC-2. Payloads must not This characteristic of the electrical system must Similarity/
generate conducted or radiated be controlled within acceptable limits so the Analysis
electromagnetic or RF inter- orbiter and payload can function nominally.
ference which will cause adverse Failure to meet this criteria could cause unaccept-
effects on the orbiter subsystems able interference in electrical, communications,
during any operating mode. The G&N, and other avionics systems. Potential inter-
conducted and radiated EMI levels ference from these sources is anticipated whenever
acceptable for normal orbiter electrical systems are used. Shielding, selection
operations will be specified in of proper components, suppression and filtering
a separate EMC document. This are usually used to prevent such interference
document will also specify the which would impair nominal orbiter operation.
levels of EMI generated by the It is mandatory that payloads adhere to this
orbiter that the payload must criterion.
be designed to operate within.

ELEC-3. The payload electrical Payload-induced electrical characteristics listed Test
system interface with the in this criterion will be limited by the orbiter's
orbiter shall be designed to capability to accommodate these characteristics
assure the load impedance, dis- and still operate nominally. If the sortie pay-
tributed capacitance, in-rush load fails to meet these limitations, the orbiter
current transients, ripple, and electrical system could be adversely affected
interference feedback will not causing abnormal operation, or the payload could
compromise normal orbiter opera- be prevented from operating by the orbiter. In
tions. either case, nominal operation is impaired; so

the criterion is mandatory.

ELEC-4. Payload electrical and Corona effects could distort the data being Analysis/
electronic systems must be gathered by a payload. Corona discharge or arc- Inspection
designed so that the nominal ing is a normal occurrence with electrical systems
functioning will not be impaired in space and sortie payloads must be designed for
by the anticipated levels and this effect in order for the payload to function
frequency of corona discharge nominally. Corona may be generally avoided or
and arcing. (See MSCM 8080, eliminated by lowering potential differences,
No. 37.) increasing the gap or length of the current path

between points of different potential, increasing
or decreasing the ambient gas pressure, or lower-
ing the voltage stresses in gas spaces by select-
ing insulations with low dielectric constants.
This criterion is mandatory for sortie payloads
which could be impacted by corona discharge.

*This criterion may be controlled by payload management.

5-6



22215-HO14-RO-00

Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

ENVIRONMENTAL CONTROL AND
LIFE SUPPORT

ECLS-1. Manned payload elements Failure to meet this design criterion would cause Analysis/Test
interfacing with orbiter atmos- excessive utilization of the orbiter support
pheric capabilities must be provisions which could lead to crew discomfort and
designed to insure the following possibly to non-nominal operations. Therefore,
environmental requirements are to assure nominal orbiter mission operations, the
compatible with the orbiter criterion is considered mandatory.
system: pressure, temperature,
humidity, CO2 control, and leak
rate.

EXTRAVEHICULAR/INTRAVEHICULAR
ACTIVITY

EVA-I. Payloads requiring EVA/ In order for the sortie payload to receive crew Demonstration
IVA support to complete their support, it must be designed so the crew inter-
missions must be designed to con- face systems can be operable in the space en-
form to the applicable man- vironment. This criterion reflects a nominal
machine interface standards with situation when crew support is required for
respect to crew capabilities such necessary payload operation. To provide for
as reach, visibility, maximum nominal payload and crew operation, this
torque and force limitations, and criterion is categorized as mandatory.
ability to handle the size and
weight of transferable payloads.

GUIDANCE, NAVIGATION AND
CONTROL

GN&C-1. Payloads requiring orbi- Sortie payloads will utilize GN&C data for real- Analysis/Test
ter guidance and navigation real- time purposes such as for pointing accuracy deter-
time data must be designed to mination and data correlation. This criterion

-interface with the orbiter GN&C will affect how the payload is designed in order
computer. This interface to utilize the orbiter support element properly..
requires that the payload be Nominal payload operation or data correlation
capable of connecting to the would be affected if this payload interface were
hardware provided by the orbiter not designed properly. Therefore, the criterion
and accepting the data format is mandatory.
(timing, state vector initiali-
zation and extrapolation, and
spacecraft attitudes and atti-
tude rates) along with the
characteristics of the data
provided.

GN&C-2. Payloads which must be If a sortie payload must be pointed toward some Analysis
pointed/stabilized for data area of interest for data gathering purposes in
gathering or other purposes must order for the payload to accomplish its purpose,
be designed to operate and inter- this criterion must be considered in payload
face with the orbiter consider- design. A definite interface exists since the
ing the orbiter capabilities for orbiter is providing a support element (point-
pointing accuracy, stability ing) with certain limitations which the payload
rate, and deadband. must consider in its design. Payloads may

incorporate additional gimballing systems to
effect greater fccuracy than the orbiter alone
provides. Nonetheless, these systems also must
interface satisfactorily with the orbiter capa-
bilities for pointing. The limitations on
accuracy, etc., are expected and are specified
to allow design for nominal payload operation;
therefore, the criterion is mandatory.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

INSTRUMENTATION

INST-1. Payloads that generate In order for sortie paylods to transmit data to Test
data to be downlinked must inter- earth through the orbiter in a nominal manner, the
face with the orbiter Stored design of interfacing instrumentation must be
Program Processor through the proper. This orbiter support element is provided
GFE Regional Acquisition Unit for normal payload data transmission and therefore
(RAU). Payloads that generate primarily affects payload operation. Improper
wideband data to be downlinked design at this interface could prevent payload
must interface with the orbiter data transmission and therefore render the payload
FM transmitter. These inter- useless. Therefore, the criterion is mandatory.
faces require that the hardware
and data signal characteristics
of the payload instrumentation
conform to the specifications
of the orbiter equipment.

ONBOARD CHECKOUT

OBCO-1. Payloads that require Prior to liftoff, the payload can be checked out Test
inflight checkout must be via the Checkout Command Decoder for serial digi-
designed to interface with the tal checkout commands and data and via the Stored
standardized Checkout Command Program Processor for payload narrowband checkout
Decoder and the Stored Program data. The Decoder and Processor are connected to
Processor with respect to hard- the ground by hardwire. The sortie payloads must
ware connection, checkout com- interface with these checkout units in order to
mands and data characteristics determine if the payload is capable of flight
and formats. operation. This criterion reflects an orbiter

support element used to determine if the a load
is capable of nominal operation and is manFatory.

PAYLOAD ENVIRONMENT

PLE-l. Payloads must be The primary reason for this sortie payload design Similarity/
designed to operate nominally criterion is to assure nominal operation while Analysis
under the influence of expected under the influence of mission-induced natural
levels of these environmental ele- environments. Since certain levels of each of
ments: low gravity and pressure, these elements is expected during a mission, pay-
space radiation, space thermal load design must include utilization of shielding,
characteristics, meteoroid insulation, and other protective devices to allow
impact, space magnetic fields, nominal operation. If the payload did not meet
solar illumination, and atmos- this criterion, nominal operation would be jeop-
pheric contaminations such as ardized and thus the criterion is considered
humidity, dust, fungus, and mandatory.
ozone.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

PYROTECHNICS

PYRO-1. Payloads requiring Pyrotechnic devices expend contaminants and impart Similarity/
operation of pyrotechnic devices shock to the structure when actuated. Sortie pay- Analysis
must be designed such that pyro- loads which utilize these devices must design these
technic actuation will not pro- systems so that the induced characteristics from
duce contamination, shock, the explosion are either controlled or of such mag-
thrust, and other stimuli or nitude as not to impact the operation of orbiter
debris that could interfere systems. Since the characteristics of pyrotech-
with orbiter operation. nic detonation could adversely impact nominal

orbiter operation and functioning, the criterion
is mandatory.

STRUCTURES

STRU-1. Payloads must be de- This sortie payload design criterion is imposed to Test
signedto conform to the assure that the payload will attach to the orbiter
orbiter standardized payload so that the payload can be supported and carried
attachment point provisions by the orbiter during the mission. The criterion
for payload mounting with involves an orbiter payload-subsystem support
respect to attachment design element (structural attachment) and is therefore
and location; and load trans- an applicable criterion. Since all sortie pay-
fer and distribution. loads must attach to the orbiter, the criterion

does not reflect a contingency situation. The
criterion must be satisfied in order for the pay-
load to be transported by the orbiter and, there-
fore, the criterion is mandatory.

STRU-2. Payloads requiring This design criterion for sortie payloads is Analysis/
specific orientation and align- required by payloads which are pointed toward some Inspection
ment within the payload bay must area of interest for data gathering and require
be designed to be compatible knowledge of, and are therefore sensitive to,
with orbiter provisions for this orientation with respect to the orbiter guidance
support along with the associated axes. Since this criterion reflects nominal
accuracy afforded by the orbiter orbiter support to the payload, it is an applica-
for these accommodations. (See ble criterion. This payload interface must be
MSCM 8080, No. 8, Rev A.) designed properly or payload data could be less

than nominal or even useless based upon inability
to correlate or interpret the data because of
alignment errors. Therefore, this criterion is
mandatory.

STRU-3. Payloads must be The orbiter will subject the payload to predic- Similarity/
designed to withstand specified table levels of each of these orbiter-induced Analysis
levels of the following orbiter- environments. The sortie payload must be
induced environments: accelera- designed to tolerate these characteristics of
tion, shock, vibration, acousti- the orbiter so that nominal payload operation
cal, thermal, nuclear radiation, will be possible. Since certain levels of
magnetic fields, effluent and these characteristics are expected, the pay-
debris contamination, and load will be protecting against a nominal,
structural distortion. rather than a contingency situation. There-

fore, the criterion is mandatory in order for
sortie payloads to be capable of operating
nominally under the influence of these charac-
teristics.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

STRU-4. Payloads must comply A payload too large for the payload bay obviously Analysis/
with specified orbiter payload could not be carried by the orbiter. Payload size Inspection
bay clearance envelopes and must be within the acceptable clearance envelope
adhere to the limitations placed of the bay walls to prevent contact due to orbiter
on payload mass properties deflection. Payloads must adhere to the mass prop-
(weight, center of gravity) by erties limitations imposed by the orbiter to keep
the orbiter, from impacting the orbiter operational capabili-

ties for launch and landing.

STRU-5. Payloads with extend- Sortie payloads with extendable sensors will Similarity/
able/retractable sensors/trans- induce characteristics upon the orbiter vehicle Analysis
mitters (using booms or other GN&C and structural systems by virtue of imparting
methods) must be designed in a change in vehicle configuration and c.g. loca-
size, weight, structural rigid- tion. The payload must be designed such that the
ity, and extension length so physical characteristics of the extended sensor do
that, when extended, the orbiter not interfere with required orbiter stabilization
is able to perform normal guid- and control functions. The requirements of this
ance and control functions, criterion are associated with the nominal opera-

tion of the orbiter and the payload system. Pay-
loads designed beyond the limits of orbiter capa-
bility would impact normal orbiter operation;
therefore, the criterion is mandatory.

STRU-6. Payloads must be With the payload bay doors open, the orbiter pro- Analysis
designed to comply with the vides a field-of-view for sortie payloads that
orbiter provisions for payload require pointing or sighting to gather data. This
field-of-view (FOV) from the criterion requires that the payload be designed to
payload bay with respect to operate nominally within the orbiter limitations.
direction and degree. Payloads requiring a FOV for data gathering could

not function nominally if the payload sensor was
not designed to point correctly or if the sensor
FOV angle was too large. Failure to meet this
criterion would affect payload operation and
prevent nominal operation. Therefore, the
criterion is mandatory.

STRU-7. Payloads must not When certain materials are placed together, a Similarity/
utilize materials that could chemical reaction occurs which is detrimental to Analysis
react adversely with orbiter the bond or connection. For example, metals
materials and affect the opera- which differ enough in electrical potential could
tion of the orbiter-payload cause galvanic corrosion. Also, contact surfaces
interface. (See MSCM 8080, of electrical connectors, electroplated with gold,
Nos. 63 and 101.) have developed semiconducting or insulating films

in the presence of sulfur-bearing atmosphere.
Payload-induced characteristics of this type
could affect nominal payload operation. Therefore
the criterion is mandatory.

STRU-8. Payloads must be After payloads have been installed into the pay- Analysis
designed to interface with load bay (but prior to launch), payload services
standard and payload-peculiar such as electrical power, fluid and gases filling,
service panels attached to the venting, and draining will be provided through
orbiter and located in the pay- service panels. The sortie payloads must be
load bay with respect to hard- designed to interface properly with these panels
ware connection, mounting loca- in order to prepare the payload for nominal
tion, and subsystem specific operation. Therefore, this criterion is man-
interface characteristics. datory.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Continued)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

STRU-9. Surfaces of payload This criterion indicates a payload-induced envi- Analysis/
equipment in the spacecraft crew ronment resulting from crew contact with payload Inspection
compartment or in manned sortie surfaces. The flaking from these surfaces could
labs which are expected to be result in contaminating particles "floating" in
exposed to extensive or continu- the zero-g environment. This contamination
ous abrasion by the spacecraft could then impact nominal orbiter electrical and
crew must not be painted or environmental control and life support subsystems
coated with materials which are operation and could possibly cause irritation to
subject to flaking. (See MSCM the (orbiter) crew, further interfering with
8080, No. 43.) operations. Therefore, the criterion is manda-

tory.

THERMAL CONTROL

THER-1. Payloads which require This criterion is imposed primarily to assure Analysis
orbiter active thermal control nominal payload support from the orbiter HTS.
must be designed to operate with Meeting the requirements of this criterion impacts
the orbiter heat exchanger by sortie payload design. The requirements of this
assuring that the coldplate criterion do not reflect a contingency situation
interconnection type, size, and but rather a necessity for nominal payload opera-
location are proper and that the tion. The criterion is therefore categorized as
payload thermal control require- mandatory.
ments do not exceed the specified
orbiter capability for all
mission phases.

THER-2. The payload must be The orbiter will subject the sortie payload to Similarity/
capable of withstanding the various temperature environments during the Analysis
anticipated thermal limits flight phases. The payload must be designed
expected to occur during the to withstand these expected temperatures by
various flight phases of pre- utilizing the orbiter heat transport system,launch, launch, on-orbit (bay insulation, shielding, and other thermal
door open and closed), and protection devices. Since these temperature
entry and post-landing. limits are anticipated, nominal payload opera-

tion would be jeopardized if measures were not
taken to protect against this environment.
Therefore, the criterion is mandatory.

GENERAL

GEN-1. Normal payload support If, in fact, the accommodations of the orbiter Analysis
requirements which are not are not sufficient for normal payload operations,
within the specified orbiter the payload would not be able to function nomi-
capabilities must be provided nally unless it is designed for this required
by the payload, additional accommodation. For example, if the

payload required AC or some different input
voltage than the orbiter supplied, the payload
must provide the DC to AC rectifying equipment
or transformer to be able to function nominally.
Or, if the payload required more accurate point-
ing capability than the orbiter could provide,
the payload must be designed for this addi-
tional accuracy capability. This criterion
reflects an absence of orbiter provisions for
nominal payload operation and assumes that the
payload data would be essentially useless un-
less this additional capability is designed
into the payload. Therefore, the criterion
is mandatory.

*This criterion may be controlled by payload management.
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Table 5-2. Mandatory Compatibility Design Criteria (Concluded)

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

GEN-2. Payloads must not Since sortie payloads remain attached to the Analysis
generate forces, impulses or orbiter during payload operation, the angular
momentum changes which will momentum from moving components or impulse from
produce adverse effects on the propulsive sources such as gas vents could affect
orbiter GN&C capability. orbiter attitude control functions to the extent

of interfering with nominal orbiter operation.
Therefore, the payloads must be designed to assure
that these payload-induced characteristics are
within acceptable limits for nominal orbiter
operations. This criterion is mandatory to
assure nominal orbiter operation.

GEN-3. Payloads must be designed The various types of payloads that will fly on Similarity/
to assure that the following the orbiter will produce these types of environ- Analysispayload-induced characteristics ments on the orbiter. The sortie payload must
or environments are not above be designed to control these induced character-
specified levels that would istics to levels acceptable to the orbiter
adversely impact orbiter opera- vehicle and crew. Failure to meet this criter-tions: contamination such as ion could impact orbiter nominal operation and
nuclear radiation, magnetic is, therefore, mandatory.
fields, sound pressure levels,
leakage (hydraulic and other
fluid systems), metallic
particles, thermal, and gaseous
venting. (See MSCM 8080, Nos. 9
and 62.)

GEN-4. Payloads that generate This design criteria for sortie payloads would Analysis/
liquid and/or gaseous waste probably not cause a crew hazard (unless the Inspection
materials above specified levels payload was contained within the crew area), butmust be designed to process and the payload-induced environment could possibly
expend and/or store the waste impact orbiter mechanical and electrical sub-materials to preclude contami- systems so they would not function nominally.
nation of orbiter systems. If the payload was expected to generate this

waste, a non-nominal situation would not exist
and the design criterion would be for the pur-
pose of nominal payload operation and would,
therefore, be mandatory.

*This criterion may be controlled by payload management.

5-12



2221 5-H014-RO-00

Table 5-3. Discretionary Compatibility Design Criteria

DESIGN CRITERION CATEGORIZING RATIONALE VERIFICATION

INSTRUMENTATION

INST-2. Transducers must be This criterion is a choice of components used to
selected to monitor at least the monitor the payload. This choice does not
nominal operating range of the assure compatibility with the orbiter but possibly
parameter to be measured. Also, enables corrective action for a non-nominal
to enhance problem resolution, occurrence. The effects of this criterion enhance
transducer ranges must extend far mission success from a ground flight control
enough beyond expected ranges to standpoint and is discretionary.
allow monitoring of off-nominal
conditions, but not so far as to
degrade the granularity (resolu-
tion) of the measurement.

INST-3. All parametric readouts This criterion is a configuration choice which is
and displays required by the utilized to increase the possibility of mission
crew must be telemetered for success through ground mission-control activities
independent ground observation.

INST-4. Instrumentation must be This criterion is designed to preclude a non-
provided to monitor and indicate nominal occurrence from impacting mission
to the crew that a non-observ- success. Since this criterion is not required
able function is either taking for basic compatibility or nominal operation,
place or has been completed. it is considered discretionary.

INST-5. Commands affecting This design is a configuration choice to insure
3ritical equipment status must payload mission success and is therefore cate-

have associated telemetry direct gorized as discretionary.
from the commanded end item to
provide a positive functional
verification.

INST-6. Payload operation, This orbiter (crew) support element is a con-
normalTy checked by direct figuration choice of payload monitoring capa-
human senses, must be instru- bility and is discretionary.
mented for shuttle missions.

ONBOARD CHECKOUT

OBCO-2. Payloads must be Payload developers may utilize this method of
designed recognizing that pay- payload checkout in lieu of instrumentation
load viewing from the Mission or other checkout devices; thus affecting how
Specialist Station will be avail- the payload is designed. This is a configu-
able to payloads for operational ration choice subject to cost-benefit analysis
checkout. and is, therefore, discretionary.

STRUCTURES

STRU-10. Payloads which will be This sortie payload design criterion would be
locate within pressurized com- imposed to protect the payload from an orbiter-
partments of the orbiter must be induced environment (decompression). Since
designed to withstand rapid de- rapid decompression is not a nominal or planned
compression to vacuum without occurrence, then the primary reason for the
damage to the payload equipment. criterion is to assure payload mission success
(See MSCM 8080, No. 2, Rev A.) probability if this contingency situation does

occur. Therefore, the criterion is discretionary.
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6. CONCLUSIONS

The results of this study will form the basis for detailed sortie

payload specifications to be written when quantitative shuttle data are

available. Utilization of the mandatory design criteria will help assure

that future shuttle sortie payloads will be compatible with the space

shuttle vehicle and help assure crew and hardware safety.

Since shuttle program management may concentrate only on those cri-

teria and specifications considered mandatory, considerable cost savings

can be realized by reduced manpower, less need for shuttle program mana-

gerial cognizance over certain criteria, and less paperwork. Also, when

new criteria are generated due to changes in subsystems, designs, or guide-

lines used by this study, the categorization processes can be used to aid

in managerial decision-making concerning these criteria.
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